UFM observation of lattice defects in highly oriented pyrolytic graphite

نویسنده

  • K. Yamanaka
چکیده

Ultrasonic force microscopy (UFM) can be used to image the distribution of elastic modulus up to several tens of GPa, which is not possible by the force modulation mode using a soft cantilever of spring constant less than 1 N m‘. It was shown that by careful design of a piezoelectric transducer, together with a sample with small friction force, deflection vibration of the cantilever without torsion vibration is achieved, even during scanning perpendicular to the cantilever axis. Using this UPM, we propose that we have observed lattice defects reproducibly under atomically flat terraces of highly oriented pyrolytic graphite. Some defect was bent at surface steps, suggesting an interaction between the defect and the steps. The depth of a defect was found to be more than 3 nm on an assumption that it is continuous across surface steps. Contrast at the edge of terraces was explained by an geometrical effect associated with excitation of torsion vibration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Optical Absorption of Carbon Nanostructures Synthesized by Laser Ablation of Highly Oriented Pyrolytic Graphite in Organic Solvents

In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures...

متن کامل

Identification of structural defects in graphitic materials by gas-phase anisotropic etching.

We developed a method of identifying the structural defects in graphitic materials by an anisotropic etching technique. Intrinsic and oxygen- or argon- plasma induced artificial defects' density and domain size can be obtained easily and precisely. It was inferred, through our investigations, that the grade ZYA highly oriented pyrolytic graphite (HOPG) sample has a better crystal quality, with ...

متن کامل

Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles.

Electrogenerated chemiluminescence (ECL) can be obtained from an electrochemically oxidized highly oriented pyrolytic graphite electrode or a graphene oxide suspension in an aqueous solution containing 0.1 M NaClO(4), phosphate buffer (PBS) (pH = 7.0) and 13 mM tri-n-propylamine. Single ECL events from individual graphene oxide nanosheets can be observed. The observation of ECL in such systems ...

متن کامل

Pathway for the transformation from highly oriented pyrolytic graphite into amorphous diamond.

We report the discovery of a novel pathway for the transformation from highly oriented pyrolytic graphite foils into amorphous diamond platelets. This pathway consists of three stages of neutron irradiation, shock compression, and rapid quenching. We obtained transparent platelets which show photoluminescence but no diamond Raman peak, similar to the case of amorphous diamond synthesized from C...

متن کامل

Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003